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‘The supreme vice is shallowness’.

— O. WILDE – ‘DE PROFUNDIS’, 1897

To all those who teach people to think deep and

to all those who teach deep networks to ‘think’.
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0 Abstract

Deep learning (i.e. machine learning of deep artificial neural networks, mainly in their strongly-

overparametrised regime) constitutes the capstone of contemporary machine learning from the

accuracy viewpoint, achieving state of the art results across a wide variety of tasks, and widespread

and growing adoption in industry, consumer market, and services. Nonetheless – potentially

hindering its application in critical scenarios – the paradigm may suffer from significant weaknesses,

among which that of adversarial (lack of) robustness : the ability of purposefully-crafted perturbations

of the inputs to unexpectedly alter the functioning of a trained model with respect to the clean

inputs – and often to the informed expectations of the user – even catastrophically.

In the context of supervised image classification – on which we will focus in the present work – this

may amount to a slight addition of adequately-distributed noise, imperceptible to human sight, to

an otherwise legitimate and correctly-classified image being able to induce a misclassification with

high confidence in a neural classifier ; or, on the opposite end of the spectrum, an image resembling

white noise being classified with high confidence as a given class, steerable by the attacker.

Given the utmost importance of such vulnerability in the context of trustworthy artificial intelligence

– to ensure the development of learning machines whose output we can trust, and to harden them

against tampering and deliberate misuse – the study of these phenomena, with the development of

ever new attacks and defences, has been central to the deep learning research community in the

last years. Yet, the field is evolving rapidly and – despite some remarkable results on a case by case

basis – no universal or definitive solution exists.

In the following work, we propose a novel deep learning architecture and training and inference

methodology, dubbed CARSO (CounterAdversarial Recall of Synthetic Observations), devised to

defend against gradient-based adversarial attacks in the white box setting (i.e. with the attacker able

to use freely the model, access weights and gradients), as a pluggable add-on to an adversarially-

(pre)trained classifier. Despite requiring additional access to a dataset of knowingly-unperturbed

images and to an attack generation mechanism (a subset of the requirements of adversarial training),

the technique is otherwise fully unsupervised – allowing it to leverage any large amount of data –

whose acquisition process has been deemed trustworthy – with no additional labelling effort.

For the training phase – clean images, and attacks targeting the pretrained classifier, are gathered.

The internal representation produced inside the classifier by both sets of images is then used

to condition a conditional variational autoencoder, learned to have as inputs the actual images

producing the representation, and the corresponding clean images as outputs (i.e., a copy of the

input if unperturbed; that before the application of the adversarial perturbation, otherwise).

This can be considered to be the unsupervised equivalent to the training of a denoising class-

conditional variational autoencoder for input purification.

During inference – the representation produced by a new input in the pretrained classifier is
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considered. It is subsequently used to condition the repeated generative sampling in the decoder,

thus obtaining a collection of candidate denoised images associated with the same representation

(and, by extension, with the original input image). On such collection, the pretrained classifier is

finally used conventionally, and the resulting mode class returned as output.

Loosely inspired by the process of active memory recollection during visual learning tasks in animals,

including primates and men, the technique just described is able to defend against universal first-

order white-box gradient-based adversarial attacks effectively, and with only slight accuracy loss, in

the settings investigated.

With respect to the already well established iterative adversarial training (with the same given

type and strength of the attacks used both in training and inference), CARSO compares at slightly

favourably at worst, as far as accuracy under attack is concerned.

A much more favourable comparison – though – is observed when unforeseen attacks come into play,

i.e. when the attacks used during inference are potentially different (in strength and/or even type)

from those seen during training – and whose usual consequence is the compromission of adversarial

robustness to a varying extent, not rarely complete (i.e. close-to-zero adversarial accuracy). On

specific occasions, CARSO against unforeseen attacks was able to recover close-to-clean accuracy.

Finally, the stochastic nature of the generative sampling, the non-differentiability of the mode-

selection operation, and the competing gradients arising at the level of the pretrained classifier (used

both to produce a representation serving as input to the autoencoder, and as a classifier for the

very same autoencoder’s output) concur at making the adversarial attack of the CARSO architecture

itself a hard, constrained multiobjective optimisation problem – effectively shielding natively the

additional subnetwork it introduces from the same pitfall it addresses in the original classifier.
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0.1 Abstract (italiano)

Il deep learning (ovvero machine learning con reti neurali artificiali profonde, principalmente nel loro

regime fortemente sovraparametrizzato) rappresenta l’epitome del machine learning contemporaneo

dal punto di vista dell’accuratezza, capace di ottenere risultati allo stato dell’arte in un’ampia

varietà di contesti, e di una diffusa e pur crescente adozione in ambito industriale, nel mercato

di consumo e dei servizi. Ciononostante - e al punto da comprometterne l’applicabilità in scenari

critici - tale paradigma può soffrire di significative debolezze, tra cui l’(assenza di) adversarial

robustness : la possibilità per perturbazioni degl’input costruite ad arte di alterare il funzionamento

di un modello pre-allenato rispetto ai corrispondenti input puliti - e spesso pure rispetto alle

aspettative informate dell’utente - in modo anche catastrofico.

Nel contesto della classificazione d’immagini supervisionata - su cui ci concentreremo nel presente

lavoro - questo può essere addirittura rappresentato da una lieve aggiunta di rumore adeguatamente

distribuito, impercettibile alla vista umana, ad un’immagine altrimenti legittima e classificata

correttamente, in grado di indurre un classificatore neurale ad una classificazione errata con elevata

confidenza. Oppure, all’estremo opposto dello spettro, un’immagine costituita all’apparenza da

rumore bianco in grado di essere classificata con elevata confidenza come una data classe-target,

scelta a piacere dall’attaccante.

Data la cruciale importanza di suddette vulnerabilità nel contesto della trustworthy artificial

intelligence - sviluppo di macchine in grado di apprendere dei cui output ci si possa fidare, e loro

irrobustimento contro manipolazioni o uso deliberatamente improprio - lo studio di questi fenomeni,

con lo sviluppo di sempre nuovi attacchi e difese, è da qualche anno centrale all’interno della

comunità dei ricercatori nell’ambito del deep learning. Tuttavia, il campo è in rapida evoluzione e -

nonostante alcuni interessanti risultati in casi specifici - non vi è ancora una soluzione universale e

definitiva.

Nel lavoro in seguito sviluppato, viene proposta una nuova architettura per reti neurali artificiali,

con associato protocollo di training e inferenza, chiamata CARSO (CounterAdversarial Recall of

Synthetic Observations), pensata per difendere contro adversarial attacks basati sul gradiente nello

scenario white box (ovvero con l’attaccante in grado di utilizzare liberamente il modello, e accedere

a pesi e gradienti). Tale proposta si configura come un’aggiunta facilmente inseribile all’interno di

un’altra architettura preesistente (e pre-allenata). Pur richiedendo l’accesso ulteriore ad un dataset

di immagini che si sappiano non perturbate e ad un meccanismo di generazione d’attacchi (un

sottoinsieme dei requisiti del classico adversarial training), tale tecnica è altrimenti completamente

non-supervisionata - consentendo di sfruttare anche grosse moli di dati la cui acquisizione sia

reputata legittima, senza alcuno sforzo di labelling ulteriore.

Nel corso della fase di addestramento - immagini pulite, e attacchi verso il classificatore pre-

addestrato, sono prodotti e raccolti. A questo punto, le rappresentazioni interne del classificatore

prodotte da entrambe queste collezioni d’immagini sono utilizzate per condizionare un conditional

variational autoencoder al fine d’imparare a mappare gli input (puliti o perturbati che siano) verso
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il corrispondente pulito di partenza (ovvero a copiare l’input, se pulito; a produrre quello precedente

la perturbazione, in caso contrario).

Questo processo può essere considerato l’equivalente non supervisionato dell’addestramento di un

denoising class-conditional variational autoencoder per la purificazione degli input.

In fase d’inferenza - la rappresentazione prodotta da un nuovo input all’interno del classificatore

pre-allenato è estratta, e in seguito utilizzata per condizionare un campionamento generativo

ripetuto nel decoder, ottenendo cos̀ı una collezione di immagini tentativamente prive di rumore

associate a detta rappresentazione (e, per estensione, all’immagine di partenza in input). Su questa

collezione il classificatore è quindi utilizzato convenzionalmente e la classe moda risultante restituita

come output.

Vagamente ispirata al processo di richiamo attivo alla memoria nel corso di attività di apprendimento

visivo negli animali, inclusi i primati e l’uomo, la tecnica appena descritta è in grado di proteggere

efficacemente contro adversarial attacks white-box universali di primo ordine, con una soltanto lieve

perdita d’accuratezza, negli scenari considerati.

Rispetto ai risultati dell’ormai noto e rodato adversarial training iterativo (dove tipo e intensità

degli attacchi sono i medesimi in fase di addestramento e inferenza), CARSO esce al peggio con

discreto favore dal punto di vista dell’accuratezza sotto attacco.

In aggiunta, un confronto significativamente favorevole si osserva nel momento in cui si considerano

attacchi non osservati, ovvero di intensità e/o tipo potenzialmente diversi da quelli considerati in

training - e la cui tipica conseguenza è solitamente la compromissione della adversarial robustness,

non raramente totale (cioè tale da produrre una accuratezza sotto attacco vicina allo zero). In

occasioni specifiche, CARSO contro attacchi non previsti è stato in grado di esibire miglioramenti in

termini d’accuratezza quasi paragonabili ad un suo recupero totale.

Da ultimo, la natura stocastica del campionamento generativo, la non-differenziabilità dell’operazione

di selezione della moda, e la presenza di gradienti in competizione a livello del classificatore

pre-allenato (dal momento che sono determinati sia nel produrre la rappresentazione input per

l’autoencoder, sia l’output del classificatore stesso) concorrono a rendere un eventuale attacco

all’architettura stessa di CARSO un problema di ottimizzazione vincolata multi-obiettivo, di assai

difficile risoluzione. Questo consente di proteggere l’architettura aggiuntiva che CARSO costituisce

dalle stesse vulnerabilità che cerca di mitigare nel classificatore, in modo nativo.
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1 Introduction

Ten years have just passed1 since what is informally considered the beginning of the Deep Learning

Revolution – the landslide series of records in visual recognition competitions shattered by AlexNet2,

a deep artificial neural network whose training had been accelerated by the use of graphical processing

units. It surely was not the first of its kind – and indeed the origin of the field may be traced

back to the seminal and overenthusiastic work of McCulloch & Pitts3, the critical but fundamental

contributions from Minsky & Papert4, or the more recent and optimistic introduction of the error

backpropagation algorithm5 which is now the almost-unanimous choice for the training of deep

neural architectures... and all the crucial developments in between6 – but the successes of AlexNet

showed, probably for the first time outside the strictly academic community, the actual effectiveness

of the convergence of abundance of data, abundance of computing power and properly trained

deep neural networks. It was also the time big data were becoming popular in industry7, and this

contributed to further propel the field of machine learning (of which deep learning is part, and at

the forefront) ahead.

Fast-forward to today, and deep learning has been endowed with not only an almost-ubiquitous role

in everyday life of industrial societies (think, non-exhaustively, e.g., of voice recognition in smart

devices, recommender systems part of online multimedia-streaming or shopping platforms, realtime

automated text-translation services), but also – and most importantly – with growing stakes in the

decision process at many levels. In a varied landscape across countries – legally and socially –, it is

currently not unusual to have deep (or, more generally, machine) learning systems assist or even

replace the driver of a motor vehicle, perform candidate screening in human resource management,

assess the solvability of potential debtors, validate insurance claims, aid medical diagnosis8, plan

and control supply-chain and manufacturing pipelines, etc., among the many scenarios.

The clear explanation of such a widespread and ever growing use of deep learning lies in its sheer

effectiveness – provided enough data and compute are available – in producing data-adaptive models

without requiring reliance on handcrafted features, and in the ever more capable9 systems devised

thanks to increased understanding, research interest, and funding of such active and promising field.

Nonetheless, on the one hand, with the fast development of the area also comes an increased

awareness and interest towards its limitations, their far-reaching implications, and potential ways

to address such shortcomings; on the other hand, greater and growing adoption increases scrutiny,

and interest in the transformations such new technology is producing upon society – for the good

1 At the moment of writing, in October 2022.
2 See [35].
3 See [46].
4 See [48].
5 See [57].
6 See, e.g. [24], [56], [26]
7 See, e.g., the rise in related Google searches.
8 One example among the very many, see this Substack article by Eric Topol – that came out right during the
writing of this work.

9 See the SotA section of the PapersWithCode project for a non-exhaustive overview of their capabilities.
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or bad – especially in those cases where things do not go as planned : anomalies, tampering, misuse,

or simply an outcome perceived as unsatisfactory or damaging by some specific social group or

subject.

The same interest – the latter in particular – is shared and closely followed by law- and policy-

makers, in the attempt to find a delicate balance between the interests of all parties involved: the

research and development community, the providers of services based on deep learning, its final

users – usually at the corporate level, and all those (natural persons or otherwise) whose data are

ingested by such systems and who may be finally affected by their output.

In such regard, the Joint Research Committee of the European Commission – while acknowledging

that the goal of a cohesive regulatory framework is distant, but urgently needed – offers10 two

crucial directions for both the technical and legal community to follow, in order to ease normation

and promote the development of artificial intelligence in the spirit of the already in-place GDPR11:

explainability and robustness for such systems.

Along the lines of the latter of the two this work will develop. Specifically, the problem of

adversarial robustness in image classification tasks by means of deep artificial neural networks will

be addressed, and a novel technique to foil gradient-based adversarial attacks directed to the inputs

of such architectures will be proposed and assessed.

Furthermore, from a purely scientific and more speculative viewpoint, the problem of (the lack of)

(adversarial) robustness in otherwise extraordinarily capable, modern deep learning architectures

may help to shed some light – though maybe just a glimpse – on the nature of biological intelligence

and cognitive processes, and on how artificial machine learning systems may improve in key aspects

by mimicking them. As such, this work places itself also at the intersection of the study of artificial

and biological intelligence. Fields with common roots (e.g., [46] is significant), whose goals, methods,

and communities have since partially diverged, but whose deep similarities under the appropriate

lens still persist, whose at times surprising differences force us to reason about their very nature

and specificity, and whose potential for cross-fertilisation never ceases to attract the endless stream

of human endeavour.

10See [23].
11General Data Protection Regulation of the European Union, i.e. EU Regulation 2016/679.
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2 The tools of the trade

The aim of the section that follows will be to provide the essential elements of knowledge whose use

has been abundant in, and required to better appreciate, the forthcoming – while also favouring

the contextualisation of novel contributions within the broader field of deep learning, and that of

adversarial defences specifically. As such, with no pretence of exhaustiveness, the following pages

will focus chiefly on a high-level conceptual overview, along a drill-down from the goals of artificial

intelligence down towards the very specific problems and use-cases considered.

2.1 ML ⊆ AI

Artificial Intelligence is usually defined as the field that studies tools and methods capable of

reproducing higher-level cognitive functions. I.e. rational and autonomous reasoning, decision-

making and agency, and/or adaptation to complex or previously unseen scenarios. As such, it is

an area that lies over a broad variety of disciplines and approaches: from computer science and

mathematics, to psychology and philosophy.

The core gnosiological underpinning from which Machine Learning and Deep Learning move (called

computational cognitivism) posits that the previously mentioned goals of Artificial Intelligence

may be reached by reduction to – though arbitrarily rich and complex – algorithmic computation:

thanks to the tools of mathematical formalisation and statistical-probabilistic reasoning as a way

to quantify and operate under uncertainty.

Machine Learning can then be defined as the set of rigorous mathematical techniques (spanning

modelling, algorithmics, statistical/probabilistic learning theory, optimisation) leading to the devel-

opment of algorithms (called indeed learning algorithms) to extract information from experience

(provided in the form of data) without being explicitly programmed to execute the specific task

learned12.

In a more measurable fashion13:

A computer program is said to learn from experience E w.r.t. to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.

Specifically, in order to have a program show such kind of behaviour at a given task, it is necessary

for the learning algorithm itself to learn from data a mathematical model of the essential phenomena

involved in the fulfilment of the task – and whose use allows for its (eventually approximate) further

execution, even on new, unseen input data. This clarification allows – in theory – to decouple the

machine learning model from the learning (and potentially inference) algorithm used to determine

its determining parameters.

12Such popular definition of ML comes from a rephrased quote from [59] – whose author also helped the development
of TEX, the typesetting system which this thesis has been composed with.

13Such definition is attributed to Tom Mitchell.
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2.1.1 Minimal systematics

At this point, one can preliminarily classify the (extremely varied, and often not clear-cut) landscape

of machine learning tasks (and related algorithms) according to the amount of supervision required

by the learning, or w.r.t. to the probability distribution the model is tasked to learn.

The former discrimination allows us to define:

• Supervised learning tasks, requiring an input/output mapping to be learned from a training

dataset of knowingly-correct pairs of the same kind (e.g. image classification);

• Unsupervised learning, where data are provided as input and properties or transformations of

them are required to be learned without further exemplification of the output (e.g. dimen-

sionality reduction);

• Reinforcement learning, involving the determination of the optimal actions (among many) to

be taken according to the state in which the agent and the environment are – by utilising only

a reward function, and eventually under the further constraint of partial state observability

and outcome nondeterminism.

Whereas, according to the latter description, we can have:

• Generative learning, dedicated to the modelling of the full data-generating distribution, i.e.

p(x) in the case of inputs only, or the joint p(x, y) in the case of input/output pairs – or some

property or transformation of them;

• Discriminative learning, dealing with the less informative conditional model of p(y|x) – or

some statistic of it – in the case of input/output pairs.

2.2 Deep Learning

Given the above, one can simply define deep learning as a subset of machine learning – whose

models are deep artificial neural networks (whose precise nature will be right introduced).

2.2.1 From artificial neurons...

The essential building block of an artificial neural network – being it shallow or deep – is the

artificial neuron. Though not a proper model of its biological counterpart – unless at a very high,

conceptual level – its structure was loosely inspired14 by the dendritic and axonal connectivity of

neurons in a biological brain, abstracting away the differentiations that may occur.

From a mathematical modelling viewpoint, an artificial neuron is just an affine vector-to-scalar

transformation followed by a (usually, except in the trivial case) nonlinear function, called activation.

i.e.

14See [46] and [56].
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y = N1(x) = A(b+w · x)

with, in the most general setting y ∈ R (the output), x ∈ Rn, n ∈ N\0 (the vector input, also

viewable as an ordered collection of scalar inputs, e.g. the outputs of other neurons). In such case,

the activation A : R → R and the model parameters b ∈ R (bias) and w ∈ Rn (weights) – to be

learned, eventually – fully define the model. In the usual scenario, the choice of A is not to be

learned, but still its fixed functional form may depend on additional learnable parameters.

2.2.2 ...to deep artificial neural networks

If we consider, at this point, a group of Nℓ ordered (and distinct) neurons Ni and provide them the

same vector x as input, we obtain as output yi = Ni(x) = Ai(bi +wi ·x) for i ∈ {1, . . . , Nℓ}, which
we can rearrange in a vector y. The transformation mapping x into y can be directly modelled

by means of matrix-vector multiplication, thus defining a new mathematical device, called linear

(neural network) layer :

y = L(x) = A(b+Wx)

with y, b ∈ Rm, x ∈ Rn, m,n ∈ N\0 and W an adequately-defined m × n matrix. In this case,

A : Rm → Rm is usually (but not always15!) just an elementwise application of the same scalar

function.

By considering again a group of N ordered (and distinct) layers – the jth of which taking as input

the output of the (j − 1)th – we can finally define an N-layers deep fully-connected feedforward16

artificial neural network NN as:

NN (x) = LN (LN−1(. . . (L2(L1(x))))) .

The output (or post-activation) of the jth layer (i.e. rj = Lj(rj−1)) – or, according to a different

convention, its pre-activation (i.e. bj +Wjrj−1) – is given the name of jth-layer representation.

The same naming convention can be scaled down at the neuron level, or up to an entire network

(by considering the ordered representations of all composing layers/neurons).

Additionally, all the weights and biases of an artificial neural network (considered as part of an

ordered collection) are called – as in the general statistical, ML, or modelling setting – parameters of

the model; on the other hand, all the additional characterising elements described by a quantitative

choice (or even non-quantitative, lato sensu) among many options – not meant to be learned – are

15See [67] as a refreshing example of such kind.
16Given the absence of loops in the (oriented) graph-based representation of the network. There, pre-activations
are represented at the neuron level one scalar per node; outgoing edges imply the application of the activation
function and multiplication with the scalar weight, whereas incoming edges, summation. Biases are encoded by
the weight of additional edges with constant unit output. The set of all neurons with edges incoming into another
(excluding biases) are called receptive field of the latter.
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called hyperparameters (among which, e.g., the number of layers – also called depth of the network

– or the output size of each layer).

2.2.3 A whole bestiary of networks and universal approximation

At this point, one may ask whether fully-connected feedforward artificial neural networks (FCNs)

are an adequate model to approximate the transformation of the inputs required by the task to be

learned – or if other kinds of similar models are available (and more appropriate).

As far as the latter question is concerned – even if not strictly required for the prosecution of the

present work – many variations have been proposed since the first neural models. Some of these act

at the level of single neurons – e.g. by changing the way incoming inputs in the graph-representation

(see: 16) of the network are handled, as in spiking neural networks; others change the layer-wide

behaviour – e.g. by structuring neuron connectivity and enforcing weight-sharing, as in convolutional

neural networks. Others more change the connectivity of the network in ways that go beyond single

layers (as in recurrent or graph neural networks, where – among other differences – e.g. feedbacks

are possible). Some of these cases – and definitely others – also require (or actually propose, as

the only modification) a different learning algorithm17 to be employed w.r.t. already established

choices.

Surely – and beyond the simple variation of hyperparameters – ever new artificial neural models

are routinely developed within deep learning research and practice, by variously composing already

established ones (i.e. considering the outputs, or even more generally the representations or the

parameters, of a network as the input of another), and by likewise adopting different training or

inference strategies18.

The adequacy of deep learning models to approximate a given map linking inputs and outputs of

interest – and specifically whether such approximation can be learned (and how!) from examples –

is a vast subject with rarely clear-cut answers, constantly evolving and attracting renovated research

interest.

The main results so far – known as universal approximation theorems – establish for a given artificial

neural architecture, seen as a family of algorithmically-generated functions parametrised by its

weights and biases, their density within a function space of interest. Originally mostly focused on

feedforward architectures of fixed depth at the increase of width, spaces of continuous functions

between Euclidean spaces, and the notion of density induced by uniform convergence within compact

sets – over the years many extensions to such theorems have been proposed and proven (most

notably in the case of fixed width and increasing depth, and for a variety of commonly used neural

architectures such as convolutional neural networks or those with a wide class of activation functions

or subject to specific constraints).

In any case – though the striking expressive power of deep artificial neural networks is undoubtedly

17The main learning algorithm for deep neural models will be discussed in the following section.
18Of this latter kind is main element of novelty of this thesis.
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confirmed by experimental results – such theorems are almost always existence ones, without

providing a direct way of determining the (hyper)parameters actually approximating a given

function within stated tolerance. Within the frame just described, the practical determination of

such latter (hyper)parameters has largely been an empirical science – relying upon clever modelling

choices (e.g. the choice of inductive biases – i.e. the properties of specific architectures w.r.t. the

input/output mapping produced), the development of ever more effective learning algorithms, and

always experimental evaluation.

It will go beyond the scope of this thesis to discuss in further depth or width the current state of

research in the field. Some cornerstone results are contained in [28], [27], [41], [71], and [31].

2.2.4 Actually learning in Deep Learning

We introduced deep learning as a subset of machine learning – however, we have so far outlined just

the modelling part of it, and briefly mentioned some formal guarantees whose transfer into practice

is hardly possible. How can we automatically learn the the parameters of a deep learning model

capable of approximately performing a given task (or at least give us the reasonable expectation it

could) – only from inputs (e.g. in the case of unsupervised learning) or input/output pairs (e.g. in

the case of supervised learning)?

The answer is, in principle, exactly equivalent to that typical of traditional numerical function

approximation, or statistical model fitting.

Given a deep artificial neural network N , we first define an adequate loss function – that should

encode the degree of success with which the model is capable of solving the chosen task, and whose

value generally depends on inputs and parameters (usually, but not exclusively, through N ) and, in

the case of supervised learning, on the outputs. Then, we minimise the loss, optimising w.r.t. the

parameters, while evaluating it on the given training data.

More precisely, calling θ the collection of weights and biases for the entire model N , and LN the

chosen loss function, we seek the optimal parameters

θ⋆ := argmin
θ

LN (x,y|θ) .

Such simple formulation, however, hides one of the most relevant differences between deep learning

and more traditional (approximate) model fitting approaches: the parameter space can be extremely

high-dimensional19, and the loss landscape – i.e. LN (θ) – highly nonconvex, rugged, with abundant

of local minima and/or saddle points20. This rules out any direct global optimisation approach, for

problems beyond toy examples.

Though not necessarily the only choice – the almost-totality of learning algorithms for deep neural

19E.g., among the largest deep neural models to date, Google’s GLaM – see [14] – boasts > 1 trillion learnable
parameters!

20For an impactful visualisation, see [40].
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models is based upon gradient descent iterations, i.e. the approximation θ⋆ ≈ θî for a sufficiently

large î, and the following iteration step:

θi+1 ← θi − λgi (1)

with λ ∈ R+ (learning rate) and gi :=
dLN (θ)

dθ

⃓⃓⃓
θi

(local gradient).

The exact dependence of gi from x directly relates to the specific choice of an aggregation scheme

of the elementwise θi-gradients computed for each datapoint available.

Let us suppose the usual supervised learning setting, with {(xi,yi)}i={1,2,...,N} as the training

dataset. gi iterations can then be defined as21

gi :=
∑︂

k∈Bj⊆{1,2,...,N}

dLN (xk,yk|θ)
dθ

⃓⃓⃓⃓
θi

with simultaneous updates of i and j (i.e. for two consecutive iterations, summation is performed

on different Bjs), and
⋃︁

j Bj a partition of the (generally shuffled) set of indexes {1, 2, . . . , N}.

The various {(xi,yi)}i∈Bj
s are called (mini)batches of the dataset, and their size (fixed, except

eventually for last one) B (batch size) is such that #batches = ⌈NB ⌉ – whereas the corresponding

gis are called noisy local gradients in case B ̸= N (as they are, indeed, a noisy estimate of the

actual local gradient).

The choice of B and λ (which are additional hyperparameters, of the learning algorithm this time)

can influence the convergence of the iterations. While it is true that noisy gradient iterations

approximate those of true gradients as i grows, the choice of a larger B (up to the limit B = N ,

called (full) batch gradient descent) reduces the variance of the estimate at the cost of increased

susceptibility to convergence toward local minima. On the other hand, a decrease in B (down

to B = 1, stochastic gradient descent22) favours convergence toward the global minimum at the

price of increased variance and number of iterations required to reach it. The number of times the

training set (in the form of batches, eventually) is entirely used during training is called number

of epochs. Ultimately, the choice of batch size in modern day boils down to the compromise23

between regularisation of the optimisation problem and (reduction in) the number of iterations

potentially required for proper convergence – provided in any case sufficient memory to store the

whole minibatch24.

21An equivalent formulation is also possible – with summation replaced by averaging of the gradients – implying a
rescaling of the learning rate.

22Note, however, that such name is commonly used in practice to describe the whole family of these optimisation
methods, regardless of the choice of B.

23See, e.g. [45] for an unusual take on the subject, endorsed by deep learning pioneer and expert Yann LeCun.
24While it is always possible to resort to gradient accumulation to counter memory starvation (see this forum
comment by one of the PyTorch developers as an explanatory example), a memory-fittable alternative has to
be preferred, due to the non-summability of batch normalisation statistics. The analysis of such regularisation
technique will be discussed right next.
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Finally, it must be stressed that optimisation plays a crucial role in the learning algorithm of a

deep neural architecture: for that reason, many variations of the prototypical iteration described in

(1) have been proposed. Chiefly – they augment such iteration with additional iteration variables

(and subsequent additive terms to the gradient) in order to better exploit greater-than-first order

information about the loss landscape and thus provide faster and/or more accurate convergence to

the true global minimum. A thorough description of such proposals is again out of the scope of

this work: however, the most common device used in this context must be mentioned. It is the

case of exponentially-weighted averages of the gradient. As an example, the nowadays ubiquitous

stochastic gradient descent with momentum variation proposes a simultaneous iteration of the type:

mi+1 ← θi+1 − θi

θi+1 ← θi − λgi + βmi

with β ∈ (0, 1]. Such addition – mimicking the momentum, indeed, of a body moving subject to a

potential LN – e.g. both provides noise attenuation for the gradient estimates and ameliorates the

convergence towards global minimum in the case of highly unbalanced (in absolute value) gradient

components across dimensions. Additionally, Adam25 – one more among the most relevant and used

variations – further regularises learning via modulation of the effective learning rate in accordance

to better estimates of local curvature.

2.2.5 Overparametrisation and regularisation strategies

As we have anticipated earlier, the number of parameters of a deep neural model can be even

extremely large – and usually purposefully so: excessive parameter parsimony may in fact artificially

cap model expressiveness beyond the (usually unknown beforehand) requirements of the task to be

learned, and render optimisation by gradient descent harder26.

Still, the deliberate modelling choice of employing a number of parameters (much) larger than

reasonably estimable – so-called overparametrisation – does come at the cost of increased risk

of overfitting27 and unmanageable complexity. To counteract such downsides – as in traditional

statistical practice – regularisation strategies have been developed, some of them specific to deep

learning, which will be discussed next.

2.2.5.1 Weight decay

First of all, one could apply – to the optimisation problem of finding θ⋆ – the same penalisation

25See [32]. Also, Adam is the basis for the main optimiser used in the learning algorithm proposed by this work –
RAdam (see [42]). The improvement upon Adam consists in an accurate analytical de-biasing of the adaptive learning
rate variance, especially in the first few iterations of the algorithm, similarly to the previously-known warmup
heuristic.

26Such latter statement has been heuristically explained by Terrence Sejnowski as follows: the probability that no
direction of the local gradient points towards a pre-set point – in this case, the global optimum – decreases as the
dimension of the parameters space increases, even for a randomly-picked local gradient vector.

27The loss-minimisation-driven adaptation of the model to the training dataset at the point of losing generalisation
ability – i.e. the inability to learn the abstract task beyond the specific exemplifying data.
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regularisation techniques typical of traditional statistics; in particular, L2-penalised fitting (à la

ridge regression). Such approach is called – within the deep learning community – weight decay28;

it is indeed possible, for iterations of the type described in (1) to express the Lridge ← L+ γ
2 ||θ||2

regularisation as a modified iteration, i.e.

θi+1 ← θi − λgi − λγθi .

The two routes, however, become different in the cases – outlined above – where exponentially-

weighted averaging, too, comes into play at the optimisation step by means of a more sophisticated

scheme. This previously unnoticed detail has since then produced, once again, different variations

of previously known optimisers29 – with an empirical general preference for proper weight decay,

but no clear-cut conclusion (and a relatively modest effect, compared with other tricks).

2.2.5.2 Dropout

Another30 – deep-learning-specific – technique directly attempts model fitting with a stochastically-

selected subset of parameters: for each batch of training data, some randomly-sampled neuron

representations (in a given pre-set proportion, layerwise) are forced to zero, resulting in the

corresponding weights and biases to be unmodified by the learning iteration. At inference time, no

constraint is imposed, but each weight is further weighted by the corresponding complementary

probability of training time zeroing.

Such technique – and its more advanced variations31 – have demonstrated remarkable success in

improving generalisation, by taking into account in a less intertwined fashion the various different

pathways activated through the model by a given input example – thus increasing the overall

parameter efficiency of the network. This comes at the cost of a generally less sparse and more

distributed representation – which may not always be an intended goal of the training.

2.2.5.3 Batch Normalisation

Though not properly considered a regularisation technique, batch normalisation has a twofold effect:

speeding up and improving converge to the true global minimum for practically any optimiser, and

reducing the noisiness of batched input data – by normalising each datapoint coordinate within its

respective batch, and further scaling and shifting it according to further learnable parameters.

Initially considered to due its efficacy to a reduction in so-called internal covariate shift32, it has

been later established33 that its main contribution is a net smoothing effect on the loss landscape.

2.2.5.4 Learning rate scheduling

Finally, in the same family of improper regularisation techniques as batch normalisation, there is

28See [36].
29See, e.g., the most relevant optimiser of this kind, AdamW – described in [43].
30See [63].
31See e.g. [5].
32See the original paper, i.e. [30].
33[61].
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learning rate scheduling : the adaptation of epoch- (or, more generally batch-) specific learning rate

to some pre-set or adaptive schedule. Such technique, originally developed for non-learning-rate-

adaptive optimisers, further speeds up convergence – while simultaneously avoiding that excessively

large steps during the initial iterations of the algorithm steer convergence away from the global

minimum, and during the later stages prevent convergence to narrower, but optimal, basins. Many

scheduling schemes – with varying levels of theoretical justification and/or empirical vetting, but no

definitive evidence across all possible application scenarios – have been proposed, and their actual

choice often depends on habit, compromise between improvement and additional hyperparameters

to tune, or brute force trial and error.

2.2.6 Algorithmic differentiation and the backpropagation algorithm

We are left – at this point – with one last, but crucial, question: how does all the machinery

outlined until now work in practice, at the implementation level? In fact, until now, we have neither

talked about how the terms gi in (1) are computed from the mere datapoint-wise knowledge of

LN (x|θ), nor we have put specific constraints on the differentiability (or even continuity!) of LN :

and in fact such constraints are mostly unnecessary in practice34.

The core ingredient seamlessly allowing such kind of computations is (collectively) called automatic

or algorithmic differentiation – and refers to a general algorithmic strategy to determine exact

pointwise evaluations35 of derivatives for (practically) any piece of legal code in a given programming

language. The underlying principles and technicalities powering such approaches go far beyond

the scope of this work. As a proof-of-concept justification, an intuitive mechanism allowing similar

flexibility (though rarely used in modern AutoDiff frameworks) – that of dual numbers – is

thoroughly described in [17]. An accurate and comprehensive survey of automatic differentiation

methods for machine (and deep, indeed) learning is available in [3].

Finally, in order to ensure computational efficiency for the whole process, the error backpropagation

algorithm is employed – guaranteeing that the term gi is computed linearly in the number of

parameters w.r.t. the number of atomic differentiation operations. This comes possible thanks

to the graph-based representation of a neural architecture, the application of the chain rule of

differentiation (by noting that in a multilayer architecture the derivatives of representations at

layer i only depend from at most all the representations of layer i− 1), and the memoisation of

such derivatives during the computations required by those of the innermost layer. Such approach

to the computation of the entire ∂L(θ)
∂θ Jacobian from a reverse network-graph traversal (and the

relevant related data structures built upon it) is called reverse-mode automatic differentiation and

powers the large majority of modern deep learning libraries.

34Indeed, heuristically – for any reasonably modern automatic differentiation framework, such as PyTorch, see [54] –
it is strictly sufficient that L(θ) and L(x) are piecewise dual-number-differentiable within open sets, and such
pieces definable by algorithmic branching and/or recursion. I.e. discontinuous activation functions are allowed,
and so are selection function such as in-place sorting.

35I.e. without resorting to numeric approximation of derivatives, and neither computing them symbolically such as
in computer algebra systems or e.g. SymPy.
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2.2.7 (more) Advanced topics in deep learning

To conclude the overview of preliminary knowledge used in the portion of work that follows, this

section will present some – selected – fundamental principles and results taken from deep learning

theory or practice, with no goal of completeness. Such abridged exposition – at the cost of partiality

– represents though the collection of core underpinnings on which our novel proposal is based,

as opposed to the easy misconception of it being just a random sample of tricks and fortuitous

consequences.

2.2.7.1 Deep Learning as homoiconic approximate probabilistic programming

Even though the previous sections may have given the impression of deep learning as a field

composed of mostly disjoint techniques and architectures, remarkable synergy among all different

moving parts is one of its most distinguishing elements. To the point that its development and

use – a concept spearheaded since 2018 by one of its pioneers, Yann LeCun – can even be viewed

through a fresh lens as a mostly compositional activity, in a similar spirit as organic synthesis or

computer programming. Indeed, such latter analogy – that of a set of pre-constituted patterns

(e.g. constructs such as declarations of variables, typing, conditional statements, structuring in

functions or objects, use of design patterns, ...) each with self-standing dignity and theoretical

justification, but variously and cleverly extended, assembled, and vetted as a new whole – is also a

remarkably clear high-level description of the true nature of modern deep learning: the composition

of transformations between real-valued, (usually high-dimensional) vector spaces – whose very

nature is learnt through optimisation of an adequate metric – of which the entry- and exit- points

may be the actual training or inference data, but whose internal representations and dominant

ingredients are probability distributions or surrogates thereof.

This description, together with the realisation that, indeed, such learnably-parametrised trans-

formations may be able to naturally end-to-end transform inputs into outputs in ultimately an

approximately same way traditional computer programs do36, allows to properly frame deep learning

as an adaptive platform for example-driven programming that is both homoiconic37 and able to

express uncertainty probabilistically, yet within a finite, well-defined description.

Additionally, such viewpoint leads remarkably close to neural computation in biological systems,

where a similar framing of the field is offered in terms of (biological) neurons capable of plastic

analogue processing of frequency-coded electrical stimuli (with the astounding and tangible result

that cognition, indeed, is!) – further strengthening the connections38 of deep learning with its

original motives.

2.2.7.2 Auto-encoders: compressing by learning to reconstruct

Back to a more specific description, the first of such aforementioned patterns we will describe is

36And even Turing-completely so; see e.g. [55].
37I.e. such that the program is at the same time represented in terms of (some of) its primitive types – either
parameters or representations in the case of deep learning, when not even both.

38Pun involuntarily intended.
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that of the auto-encoder39: a peculiar deep learning architecture used to first learn, and then apply,

a compression of input data. In this case – and almost always, unless explicitly specified – such

input is to be considered part of a somehow structured collection: being it that of the samples of a

specific – but potentially unknown – probability distribution of interest (or a mixture of them), or

more broadly that of inputs generically satisfying a property (e.g. being natural images – i.e. not

being purposefully generated in a corner-case manner, for whatever reason! –, being recordings of a

human voice or animal call, being time ticks of stock title pricing, etc...), often enough to specify

the context dictating their use.

And indeed, the goal of finding any compressed representation for the data of interest directly

translates in exploiting the properties of the overall collection – or the collection of properties of

individual datapoints – to reduce their dimensionality in the most information-preserving40 fashion.

The practical approach required to accomplish such (potentially very hard!) goal is on the other

hand particularly simple.

The neural architecture will be composed of two subnetworks E and D – respectively the encoder

and the decoder – linked by the following conventional relations:

c = E(x); x̃ = D(c)

with, usually, dim(c) ≪ dim(x) ad a loss encoding the similarity between the original input x

and x̃, that constitutes in this case its tentative reconstruction – e.g. an L2 similarity metric s.t.

LAE(x) = ||x−D(E(x))||2.

The dimensionality bottleneck – also called indeed an information bottleneck – induced by the

property dim(c) ≪ dim(x) forces the network, trained under the loss-driven optimisation, to

reconstruct the original input from a much smaller-dimensional representation of it; and as a

consequence, forces the encoder to convey as much information as possibly learnable in the c = E(x)
step – with the code c being the compressed result sought after.

At this point – with D usually discarded except in very particular scenarios – the learnt compressor

E may be used on any potential input, in order to obtain a compressed representation of it – which

is then treated as its characteristic, lower-dimensional, set of features for further processing.

One potential downside of such architecture – beyond the specific task of learning a compression

of the data – is the fundamental lack of use for the corresponding generator, which is nonetheless

functional for the whole, but not on its own.

2.2.7.3 Learning distributions by auto-encoding sampled data

Right from such latter observation, one can consider the thought process leading to the development

39A nowadays well-established architecture in the field, for which it is difficult to backtrace to a clear first in
literature. See, e.g., [34].

40Here intended both in the information-theoretical sense, more formally – but also in the less well posed meaning of
‘being able to preserve all features of interest, while potentially discarding the less relevant ones’.
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of the variational41 and variational conditional42 autoencoders: probabilistic counterparts of the

simple autoencoder which allow generative modelling (and indeed whose encoder alone is almost

never used on its own).

The main issue in dealing with the decoder of an autoencoder in the attempt to generate samples

from the same collection – or more precisely, in this case a proper probability distribution of the

inputs – is the understructuredness of the latent space (i.e. the space of the codes). In fact – being

autoencoders only trained to match single given inputs to single learned codes (and viceversa)

– no guarantee is offered on the learnability of a meaning for codes outside those coincidentally

correspondent to inputs fed at inference time. Only in such case, a well-formed reconstruction is

probabilistically guaranteed within arbitrarily tight bounds43.

Additionally, even in the case a probabilistic device is employed in order to inform the en-

coder/decoder pair about a sampling process happening in latent space (as will indeed be the

case for the variational class of autoencoders), the tractability of the sampled posterior (i.e. the

output of the decoder, in this setting) is far from guaranteed w.r.t. differentiation and thus loss

gradient computation – both in general terms due to the sampling itself, whose parameters may be

inter-dependent, and for specific, but arbitrary, probability distributions to be sampled from in

latent space.

Both these concerns are addressed – for parameter-only conditional p.d.f.s (e.g. in the form

x ∼ p(x̃|ϕ1, . . . , ϕs∈N)) by maintaining the same architecture for the encoder/decoder pair, further

endowing it with:

• An actual sampling in code-space : the result of the encoding is not a deterministic code,

but a collection of ordered parameter-vectors specifying a given-form p.d.f., and a sample of

whose is passed onto the decoder.

• A latent p.d.f. adequately reparametrised (reparametrisation trick) in such way that the

model posterior may be obtained as x̃ = DθD (c) – a deterministic function of c, parametrised

by the weights of the decoder – and c ∼ platent(c|EθE (x)).

Since platent cannot be jointly learnt from data and being able to satisfy the requirements of the

reparametrisation trick, the loss function to be adopted should both ensure that x-x̃ similarity is

preserved, and that the samples c ∼ platent(c|EθE (x)) are close to those of a known, given p.d.f.

from which they will be sampled at inference time to observe new posterior samples as the output

of the decoder.

The resulting loss becomes LVAE := LAE +KL(platent,plobs), with platent the desired latent p.d.f.,

plobs the observed latent p.d.f. obtained as platent(c|EθE (x)), and KL their Kullback-Leibler

divergence.

41See [33] for the paper in which it was introduced.
42See [62] for the paper in which it was introduced.
43In the sense of Probably Approximately Correct bounds, given enough – but finite – width and depth of the
architecture, training data, training epochs, and a sufficiently large dimension for the codes. For a hint on how
such actual estimations are performed, see e.g. [16] and [13].
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Overall, the process described by the minimisation of such loss, closely resembles that of variational

free energy minimisation, whence the name of such architectural pattern.

Finally, in order to sample from a conditional p.d.f. the random variate posterior

x̃r.v. ∼ p(x̃r.v.|xc.v., ϕ1, . . . , ϕs∈N), given a set of conditioning variables xc.v., the training pro-

tocol is further modified. Both xr.v. and xc.v. are jointly given as input to the encoder, and the

code is built by further concatenating the output of the encoder with xc.v.. The loss function and

the generative process are the same as in the case of VAE s.

2.3 Adversarial Robustness (and lack thereof)

The previous sections – though tentatively hype-agnostic, but also never denying evidence of success!

–, by describing only what we know has worked so far, may have given the impression of deep

learning as a flawless paradigm able to solve any problem thrown at it, no matter how tractable or

difficult to think it as such44.

In spite of extraordinary results – at even human or better-than-human level in a well-specified set

of tasks – deep learning is not free from pitfalls. Among which, that of vulnerability to adversarial

attacks, which constitutes a major hurdle to the adoption of deep learning in safety-critical or

heavily-regulated scenarios, and among the most relevant to address in order for the public to trust

it with their most valuable assets or decisions. Additionally, the study and development of methods

to improve adversarial robustness have also a direct effect in enhancing the behaviour of solutions

in presence of non-adversarial but unforeseen, corner-case45 inputs.

2.3.1 Essential definition(s)

Trying to preserve the greatest generality possible, adversarial attacks towards a machine learning

system are specially-crafted (inference-time) inputs designed to disrupt its expected behaviour. As

most often referred to in the context of classification – which we will discuss in this thesis – we will

focus on inputs to a classifier, able to produce a misclassification.46

2.3.1.1 Commented systematics of adversarial attacks

Still within the scope of (supervised) classification, we can first classify adversarial attacks w.r.t.

the types of anomaly they seek to produce in the attacked model.

Focusing on the input, we have:

44It is difficult not to think at the fact that a similar trend, is happening – this time for real (or maybe even not so
real) – in the small/medium-sized industry landscape, trying to deal with artificial intelligence.

45As we will see, the phenomenon of adversarial attacks rises indeed from – quite literally – corner-cases, in
classification settings.

46Let us preliminarily address a typical concern, here. Indeed one may ask what exactly a misclassification or
unexpected behaviour is. Without delving into an epistemological rabbit hole, it will suffice to define them as any
marked difformity w.r.t. the (rational, informed – if applicable) confident decision of the prototypical system the
model is trying to mimic. E.g. in the case of image captioning for a social network platform, any caption grossly
misdescribing the original picture for the majority (or key interest groups) of its users (or a statistical sample
thereof).
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• (purely) Synthetic attacks, if they produce inputs exclusively from the use of the attacked

model – and, of course, of an attack generation algorithm – (e.g. excluding the possibility of

exploiting external knowledge, datasets, etc. ). The result is usually similar to data noise,

generally carries no resemblance with elements of a hypothetical training dataset, and (in

cases where inputs are perceivable) is easily recognised as anomalous by a trained human

operator.

• Perturbative attacks, if they are expressed as a perturbation of legitimate – already known

to the attacker – input. Perturbations are usually additive and constrained in their norm47,

resulting in realistic and often undetectable (provided the constraint is tight enough) perceptual

alterations with high effectiveness in fooling the classifier. They usually carry the highest

risk, due to their scarce detectability (even by machine learning models themselves trained

for the task – being them susceptible to the same kind of attack!)48.

If we move to the analysis of outputs (or better, the changes in output before and after the

attack)49, we can distinguish among:

• Targeted attacks, if the result of the attack should be classified as a given, pre-stated, class.

Or, more rarely, if the input to be perturbed should belong to a given, pre-stated, class.

• Untargeted attacks, if a change in output is the only desired outcome – with no further

constraint. Generally speaking, untargeted attacks are easier to perform successfully – and

more difficult to defend against. Additionally, the set of untargeted attacks also contains the

best50 targeted attack among all classes.

Finally, we can further subdivide attacks in relation to the degree of knowledge of the adversary

about the model attacked. We can perform:

• Black-box attacks – i.e. attacks relying only on knowledge extractable from the model

along strictly expected use. This includes, and is restricted to, inputting data and reading

the corresponding output. No further access is given to model architecture, structure or

representations/gradients. This is the less susceptible case and corresponds to the model

being deployed behind an ideal API (with no rate limiting, though), and maximally relying

on security by obfuscation.

• White-box attacks – i.e. attacks that can rely on all extractable knowledge from the model,

as if root access was granted to the very system the model is running on. This includes the

47In the scenario – assumable w.l.o.g. – where inputs are real-valued vectors or mappable as such.
48Additionally, perturbative attacks include – for a constraint lax enough, and starting from whichever single one

input – all possible purely synthetic counterparts. This makes the perturbative setting a sufficient one to be studied.
49We implicitly assume here, and in all the following, the perspective of top-1 accuracy under attack assessment :

the model is considered as an end-to-end system outputting the most probable class corresponding to its input –
the only class we care about. This has numerous advantages w.r.t. the work that follows, as it allows for easier
comparisons of attacks exploiting different vulnerabilities in the attacked classifier, is generally harder to recover
w.r.t. the unattacked model, and avoids the otherwise cyclical reference fallacious rank-based approaches, implicitly
relying on the fact that the positions of output classes in a ranking are conditional on the previous ones having
truly that position – which is disproved after a successful top-1 class attack.

50In the sense of lower loss argmin; this will be clear after we discussed how (the greatest majority of) attacks are
generated.
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ability to input data into the model, read the corresponding output, but also its architecture,

implementation details, representations, gradients, auxiliary variables of layers (i.e. batch

normalisation statistics) or of the optimiser. The threat model closely reflects that of services

operating on a compromised system, or that of commercial items that can be bought and

probed in a protected environment. This is the hardest scenario for the defender – and

reasonably the most realistic for the widest array of actually deployed products.

• Grey-box attacks – comprising all attacks lying in between the two: usually a white-box with

additional restrictions imposed.

2.3.2 A geometric intuition: the manifold hypothesis51

In order to better reason about adversarial attacks, defences, and how it is possible to improve the

robustness of deep neural models – let us focus first on a (relatively intuitive52) introduction to the

data (sub)manifold hypothesis: it will also naturally lead to a precise description of perturbative

adversarial attacks, and some quantitative measures for their assessment.

In the general setting of a classifier accepting real vector-valued inputs of given dimension, the

model itself will produce a valid class as output, among those on which it has been trained53,

independently from the actual nature of such input (e.g. it being a natural image or not) and just

provided it is legal. This allows for a hypothetical, idealised, exhaustive labelling of any possible

legal input with the class in which it is mapped through the classifier – which is indeed a partition

and equivalent to a full specification of the trained model. We will now ask how input data of

interest are placed within such partition and in relation to their ambient space.

The data manifold hypothesis54 posits that data belonging to the hypothetical collection on which

the classifier is properly expected to be used – and of which, excluding gross mistakes or procedures

explicitly meant to be otherwise, also the training data is part – belong to a manifold whose intrinsic

dimension is (much) smaller w.r.t. its ambient space. On such manifold, we could55 also draw the

ground truth decision boundaries we would expect the ideal classifier to abide to.

From the intersections of the data manifold, ideal decision boundaries on it, and classifier decision

boundaries in input space, we can identify the following regions (in input space):

• The intersection of ideal and actual decision regions, on the data manifold. In this region the

learned classifier behaves exactly as expected w.r.t. the predicted class.

51For a much more in-depth analysis, see e.g. the excellent [15].
52By choice, and not being a necessary requirement for the theory itself – whose exhaustive and far-reaching analysis

is out of the scope of this work.
53This explicitly excludes classifiers specifically-built for open set detection. However – even thought the inner
dynamics leading to an input being classified as part of the open set are different from those class-specific – the
open set may be considered just as an additional class like all the others, and the reasoning will still be valid!

54Even though called a hypothesis, of such next claim there are theoretical supporting arguments, and experimental
proofs within specific data domains – even dating back thirty years, though not directly in this form; see [37] for
an interesting example of such kind. What it is more hypothetical, indeed, is its relationship with robustness.

55The hypothetical is used because of the impossibility of doing it exhaustively, unless the dataset is algorithmically
generated with such goal in mind.
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• Still on the manifold – outside the previous region – and close to misplaced decision boundaries

of the classifier. Even though such region is the richest of training input data, this is very

often not enough to ensure exactly ideal behaviour is observed56. Inputs belonging to this

region will definitely look real (or an interpolation of different realistic datapoints): some of

them will surely be perturbative adversarial attacks to the classifier.

• Still on the manifold – outside previous regions – and far from the regions of high boundary-

point density. Training datapoints in such region should be minimal (indeed, exactly zero

in the case of an ideally-regularised model of the adequate size and trained until complete

convergence) and misclassifications occur due to e.g. the represented class being not a

legitimate output of the classifier57. Such region does not contain (practically by convention)

adversarial attacks and poses little risks for the user or the provider, and are easily recognisable

from experience.

• The off-manifold region – for which a true class is not even definable. Such region contains

the most adversarial attacks, including all those resulting from larger perturbations. It

is practically unavoidable for any classifier trained on clean58 inputs of sufficiently high

dimension59 and poses manageability problems for such reason and due to its lack of structure

w.r.t. the data manifold.

In the usual process of attack generation – outlined below – none of such region is intentionally

targeted (with minor exceptions pertaining only to the off-manifold region), but one of them

necessarily results as containing the best solution of a loss-minimisation problem similar (if not

identical, in some cases) to that of training an artificial neural network.

2.3.3 How it’s made: Attacks

From the perspective of an attacker, no attack is better than that which succeeds. While such truism

may justify literally any technique resulting in even occasional misclassifications – which, even if

the result of sheer luck, may carry extraordinary amounts of risk or actual damage, nonetheless –,

a more systematic approach to the problem, especially from the standpoint of the defender who

must counteract such attacks, strongly benefits from mathematical formalisation and amenability

to optimisation strategies to automate, speed up, and pinpoint the search of relevant perturbations.

Given the generality of the perturbative setting, attacks usually seek additive perturbations to

knowingly legitimate inputs, bound by a measure of strength.60. An ϵ-perturbative adversarial

attack to the classifier N (considered as an end-to-end class-outputting device), given ϵ ∈ R+,\0

56And indeed, the behaviour of the classifier is very likely still extrapolatory: see [2].
57As an extreme example, a classifier perfectly trained to assign the animal species to photos of animals will still
classify non-animals as a particular species of them, by visual similarity or – most often – due to the effects of
confounders.

58In the sense of natural, non-adversarial examples.
59See, e.g. [6].
60Which may be given – as anticipated – e.g. by the norm of the perturbation. If such constraint is not into place,

one may think of perturbations given by the difference of two legitimate input points: the resulting perturbed input
is a successful attack by constructive definition, yet definitely not the intended goal.
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and the norm || · ||, is thus any point x⋆ = x0 + p s.t. N (x⋆) ̸= N (x0)
61 and ||p|| < ϵ for some

given p, and legitimate input x.

The problem can now be decomposed as follows. For each among some ϵ-balls centred at knowingly

unperturbed datapoints (within the input space, and defined by || · ||), the optimal p is determined

according to some loss quantifying the confidence in the success of the resulting perturbed input if

used as an attack.

2.3.3.1 White-box scenario

In the white-box setting, the knowledge of gradients within the model generated by any input

conceivable allows for gradient-based optimisation schemes, mutatis mutandis similar to those

described for the tentatively-optimal choice of weights during training. In particular, the weights

are kept fixed while the optimal perturbation (or, directly, adversarial input) is optimised w.r.t. to

the uphill direction of the gradient induced by a similarity loss not in principle different from that

used to train the network.

Of this kind, e.g. and absolutely not exhaustively, but of particular interest:

• The FGSM attack62 (i.e. Fast Gradient Sign Method), which iterates just once along the

uphill gradient sign direction, with a displacement in input space of norm ϵ.

• The PGD attack63 (i.e. Projected Gradient Descent, reasonably to be considered an iterative

extension of the FGSM. In particular, iterations of variable norm (not necessarily ϵ) are

performed in the direction of the local gradient and proportionally to its modulus – starting

from a legitimate input and for a given number of times; after each step, if the resulting point

falls outside the ϵ-ball of interest, it is orthogonally reprojected on its border.

Of a different kind, e.g., the DeepFool attack64, instead, explicitly looking for the closest perturbed

inputs at the intersection of the input space with the hyperspace orthogonal to the binary65

one-vs-all boundary of the input class, still within the given norm constraint.

2.3.3.2 Black-box scenario

In the case where model gradient information is missing or unavailable, the success rate of attacks

is reduced w.r.t. their white-box counterparts. However, still effective techniques rely on:

• Gradient-free optimisation schemes (e.g. genetic programming, reinforcement learning ap-

proaches) with actual success rate (or any proxy metric) as the function to be maximised;

• Machine learning systems aimed at directly sampling from an adversarial region of the input

space, whose identification is delegated to an additional model to be trained on similar (or

61This is indeed the untargeted version of an attack. The targeted equivalent is obtained by replacing the inequality
with an equality to the target class, different from the original. The analysis will focus on the former, with the
latter always easily obtained with minimal modifications therein.

62Introduced in [22].
63Introduced in [44].
64Introduced in [50].
65In the case of untargeted attacks; additional care should be exercised in case of targeted ones.
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the exact, if available) inputs to those employed for the attacked model. Of this kind, e.g.,

GAN-based66 attacks – which can even be used in a white-box setting, by variously providing

the additional information to one or either the two networks involved in GAN training (of

this type – both black or white-box – e.g. AdvGan67).

• White-box attacks targeting surrogate models (or mixtures thereof) of the one to be attacked.

Such surrogate models may be obtained by re-training them on the same (or similar) dataset

used for the model actually under attack68 – or directly (and expensively) derived just from

the input/output pairings produced by it.

2.3.4 How it’s made: Defences

While research of attacks is fundamental in advancing the field – with better understanding of the

actual dynamics determining such vulnerabilities, and to promote offensive security of machine

learning systems – the holy grail of adversarial robustness research is to produce models, training

algorithms, and inference protocols able to counteract such weakness, for the development of more

trustworthy AI, and for the greater good.

Equally extensive, but often relying on much deeper knowledge and elaborate procedures w.r.t.

that of attacks, the field of adversarial defences is in continuous evolution and rooted on an always

renewing body of intuitive, empirical, and formal knowledge.

The main avenues of successful, practical developments in the field are the following:

• Adversarial training69. By large margin the most used approach – consisting in augmenting

the training set of a model (of given weights, potentially at any point along its training)

with adversarial inputs generated according to specific attacks (e.g. from the set right

discussed) but endowed with their original label, and continue training on the augmented

dataset. Expanding the on-manifold regions where the classifier works as expected with

ever new perturbed datapoints where they are most needed, and providing a true label for

selected points off-manifold, it is one among the few techniques with full applicability to any

already existing architecture. This comes at the cost of the necessity for model/dataset-specific

re-training, and much increased reliance on the correct threat modelling choices to mirror

the (even unforeseeable) threats to be faced – though transferability of defences is partially

possible across models, datasets, and attack types/strength.

In such regard, specific attacks are of particular interest – so-called universal : those potentially

able to converge within any point of the ϵ-ball of choice (as opposed to those operating only

66Where two deep neural networks learn each to perform a different task: one must map random-noise samples
into realistic-looking images, while the other must discriminate whether an input is sampled from an unperturbed
training set or produced by the other network. In a turn-based, minimax game, the generator becomes incrementally
better at its task, under the improved capabilities of the, improving too, discriminator. In the use of similar
schemes for adversarial attack generation, information about the class put out by the target classifier should also
be included somehow in the loss of the generator. For an in-depth overview of GAN s, see [21].

67See [68].
68Of this type, e.g. the solution by Florian Tramèr to Aleksander Madry’s MNIST Adversarial Examples Challenge

for the black-box setting, 2017 – still the second-best even after 5 years of open leaderboard.
69Originally proposed as a technique in [22].
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at a fixed displacement from the original input, or showing preferential directions), and thus

able to theoretically produce the maximally representative perturbations for the model to

learn from within adversarial training. E.g. the PGD attack is universal ; FGSM it is not,

due to the fixed displacement of exactly ϵ.

Importantly, adversarially-trained models can still be attacked with the same techniques

(indeed just their weights have changed, not the threat model): the defence is meant to reduce

their effectiveness, and on average increases the time or number of iterations required to find

a successful perturbation.

Finally, multiple adversarial attacks (in the sense of different types, strength, even threat

model) may be used within the adversarial training of the same network. This process –

though effective – comes to terms with what is indeed a training on a much larger dataset of

examples, sometimes carrying conflicting perturbations w.r.t. to the optimal way to update

model parameters.70

• Adversarial detection. Framed as the solution of a binary classification problem, this approach

aims at just detecting whether (or with what probability) an input is adversarial w.r.t. a

given model, inviting the user to caution (or rejecting the output right after) in case it

probably is. Typical approaches tailored toward anomaly detection may be employed, with

very little domain-specific adaptation. E.g. the discriminator of a GAN of the type described

in previous-page footnote can be used for the purpose.

Though a potentially interesting track to pursue, such techniques do not attempt to solve

the problem: they seek to make it manageable. Indeed, they are inherently susceptible of

denial-of-service attacks – by adversarially targetting the detector to always raise a flag,

extending attack surface of the system, and carrying no guarantee of success.

• Adversarial purification. Similar in goals to adversarial training (i.e. directly attempting to

ensure a correct classification of adversarial attacks) and in tools to adversarial detection (i.e.

delegating the task to a different system than the attacked), such class of methods aims at

recovering from the eventually perturbed input its original, clean version – by the development

of a unified mapping of clean inputs into themselves, and of adversarial ones back across

the additive perturbation. Such technique, similar in framing to more typical denoising or

controlled editing tasks, may be performed in a fashion completely independent from the

true labels of data, thus being usually free from the burden of sometimes required additional

labelling efforts. Supervised, self-supervised (even energy-based) and weakly-supervised al-

ternatives in the same spirit do further exist. Encoder/decoder architectures, and conditional

generative models are dominant within this class of approaches.

Due to the lack of specificity to the attack, or reliance on true labels, these defences can

become very creative. As illustrative examples:

−→ PuVAE71 obtains an increased robustness to attacks, without the need for adversarial

70An experimental evaluation of the process – and much more! – is given e.g. in [65].
71See [29].
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training by first learning a true class-conditional VAE to map an adversarially-perturbed

input and its true class to its purified version. Then, at inference time, the pair of adversarial

input / each class is passed through the model and the resulting reconstruction bearing the

most similarity with the perturbed image, is selected and finally classified.

−→ The generator of Defense-GAN72, instead, learns to generate tentative input recon-

structions – subject to difference-norm constraints w.r.t. the perturbed input – while the

discriminator learns to score the adversarial likelihood of the result. Still being one of the

best-performing defences in both white-box and black-box scenarios, such device carries the

cost of extremely lengthy training times, and much longer than average inference times too.

• Inference-time defences. Class of techniques containing various approaches trying to enhance

resilience to adversarial attacks by adapting the inference protocol of the model. Inspired by

test-time augmentation and still in their relative infancy, the most remarkable contributions

propose to classify copies of the same input subject to standardised transformations (e.g. in

the case of images: rotation, cropping, etc. ) – provided that the model has been trained

to correctly classify analogously-transformed clean inputs. Such approach usually – but

inconsistently – decrease the success rate of adversarial attacks, unless the adversary succeeds

in the much harder goal of producing correspondingly invariant attacks.

• By leveraging a theoretically-robust structure. Defences within this class – though even ex-

tremely different among themselves – all try to transpose into usable models some theoretical

insights coming from an experimental or conjectural study of knowingly robust models com-

ponents. A comprehensive theory of robustness is still lacking; nonetheless some results of

such kind have been successfully obtained. Examples may include Parseval Networks73, trying

to link well established mathematical properties of the function described by a model (e.g.

its Lipschitz constant) with its robustness – and inform consequently model architecture

design; or kWTA networks74, in which neuron-wise activation functions are replaced with

layer-wise equivalents based on sorting functions and much more robust after a successful

adversarial training (a result not to be taken for granted, in comparison with traditional

identical counterparts).

• By changing the rules of the game. A whole topic of its own, proposing completely different

architectures for models or their parts (e.g. based on spiking neural network models), or

different training algorithms, based on different interpretations of the network parameters or

representations. Of this latter kind, Bayesian Neural Networks – whose robustness against

gradient-based attacks has been well established by e.g. [7], at the cost of much higher training

complexity.

72Proposed in [58].
73See [8].
74See the already-mentioned [67].
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2.3.5 On threat models, attacks/defences transferability, unforeseeability

From the outline just described, it is clear that white-box, untargeted, perturbative attacks represent

the expression of a threat model much more conceding to the adversary w.r.t. their counterparts –

and more dangerous for the user (or the deployer) of the model. It is additionally evident that a

successful black-box attack will succeed also in the respective white-box setting (where, indeed, all

the additional information would be simply not used in such case).

This may suggest the simplistic – and only partially consistent – conclusion that tackling white-box,

untargeted, perturbative attacks is enough to foil them all.

While this may approximate truth from a statistical viewpoint – in the sense that a moderately large

portion of black-box -attacked inputs are within reach in the corresponding white-box counterpart,

and given the ability of a model specifically hardened against white-box attacks to foil many

black-box analogues – there still exist black-box and/or targeted techniques based on wildly different

– even unique – mechanisms, both effective and hard to defend against, even specifically.

Additionally, even with a restriction to the exact (and only) threat model to be addressed, one is

left with the Herculean task of determining which specific attacks to defend against (in both type

and strength of the maximum allowed perturbation): the struggles are similar to those described

right above for the threat model of choice – with no clear-cut answers75. This may give an example

on how difficult a general solution to the problem of adversarial robustness actually is, and on why

even smaller progresses are cheered by the community. The only possibility we are left with is

to choose a combination of threat model/type of attack, try to develop new strategies to increase

robustness in such scenario (i.e. resulting in so-called foreseen attacks/settings), and finally assess

if any improvement also extends to other settings (i.e. unforeseen attacks/settings).

In such light, we can justify the adoption and study of the white-box, untargeted, perturbative

threat model (preferably if resulting in universal attacks) as a reference – the hardest to face – but

definitely not the exclusive in order to (try to) solve the problem of adversarial vulnerability.

75But, as briefly discussed earlier, threat models foreseeing universal attacks should be favoured, by theory.
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3 Aiming at robustness, guided by neuropsychology

The following section – definitely shorter than the previous in spite of a reverse allocation of efforts

necessary for it to be ultimately realised – will be dedicated to the description of CARSO76 (i.e.

CounterAdversarial Recall of Synthetic Observations) – a novel technique of defence to adversarial

attacks, synergistically spanning the adversarial training, purification, and inference-time subclasses.

Additionally, the technique allows for fully-unsupervised training (i.e. class-label -less), but provided

a dataset of known (unlabelled) perturbations or an attack generator is available when starting

from a pretrained adversarially-trained model – achieving even greater robustness against foreseen

attacks, and strong robustness against unforeseen attacks the sole pretrained model is completely

unable to foil.

The method has been developed as a defence against white-box, untargeted attacks towards image

classifiers; the applicability to other settings within image classification is reasonably assumed, but

still pending, planned verification – along that within other fields of application.

3.1 Neuroscience as a guiding inspiration

It is safe to say that the core ideas behind this work – and even its goal and field of application –

definitely did not came about as such, but were gradually discovered along the way77.

The starting point was a loosely defined intention to exploratorily investigate the liminal space

across artificial intelligence – and specifically machine learning with artificial neural architectures –

and cognitive-to-computational neuroscience.

Indeed, the origins of the field of deep learning – then represented by the study of local and

emergent properties of essentialised mathematical models of interacting neurons, their interrelation

and capabilities w.r.t. learning – shared with neuroscience the deep and ambitious goal of modelling

in some way activities pertaining to brains, no matter how complex or intelligent, with the aim of

doing the former, and of understanding the latter.

Decades later, the gap has widened – with clear (and often healthy, if within limits) differences in

methods and mission – not rarely still spurring the debate about which degree of interconnection

is the one to be wished for. And in the light of the extraordinary successes in deep learning –,

even the most advanced of its systems is still unable to even remotely approach some peculiar

cognitive features of animals or humans, let alone with the ease of those living organisms. And still,

they may be the only practical realisation of the systemic behaviour some within the deep learning

community are trying to replicate in silico from a different viewpoint.

Among the wide array of cognitive phenomena qualifying for the properties just outlined, that

of higher intelligence in humans or primates, up to cognition and consciousness, is definitely the

76The subtext originates from the Italian name of the Karst Plateau region stretching across the Italian-Slovenian
border, and whose colours, lovely hikes, and sober austerity is loved by all those who have visited – let alone lived,
or still living within! – the Trieste area.

77In an unplanned corroboration of Kenneth Stanley’s core tenet; see [64].
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most striking and – not surprisingly – out-of-reach. No settled, experimentable, definition of it has

been even produced! Regardless, armed with just a tentative, blurry, definition of consciousness as

‘thought about thought’ we fast approached a sanity check : is this even expressible in terms of the

current deep learning framework?

3.1.1 Learning by recall and self-introspection

Losing much of the deepness in our thoughts, we finally focused on a very specific flavour of the

definition we had in mind earlier: the recall of acquired memories – specifically, during the process

of learning, so to slightly close the already very large gap with deep learning practice.

Even simply by self-introspection – but definitely also within published psychological and neuropsy-

chological literature – it appears clear that recall of previously memorised information is crucial in

(not only) learning processes across a wide variety of animal models, and in humans. In such regard,

and with not even the slightest intention of completeness, see e.g. [47] and [72], about the peculiar

phenomena of forward testing and repeated testing, potentially rooted in the explicit awareness

that currently acquired, new, information may be necessary for future recall. Or, more generally,

about the role of hippocampal dynamics in learning and memorisation of spatial information, in [4].

Finally, for much broader-encompassing treatise on learning, see published book [10].

From which, the idea to directly utilise the representation of (part of) an artificial neural network –

as a rough approximation of liminal memory within a deep learning model – to inform the training

of itself (or another portion of it) – with focus on using it as an adversarial defence.

The final result of the perambulation that ensued is reported in the following.

3.2 CARSO

3.2.1 Problem & solution statement

CARSO is a novel deep learningmodel architecture and associated training and inference methodology –

designed to increase the robustness of image classifiers against gradient-based perturbative adversarial

attacks: both foreseen and unforeseen, and to do so better than iterative adversarial training78

according to top-1 accuracy under attack79 evaluation, in both scenarios. The model architecture

has been designed as generally independent from specific hyperparameter choice80, which can be

freely optimised according to the specific problem of interest.

Finally, since relying on the adversarial training of the classifier of interest, against foreseen attacks,

such classifier can be directly provided as an adversarially-trained, pre-trained model – without

preventing the training of further parts of CARSO or full applicability of the training/inference

78I.e. where each batch of the training set in enriched with adversarial attacks against the current parameters of the
model, after which such parameters are updated as usual, and previous attacks discarded to be re-generated right
afterwards.

79The ratio of correctly classified adversarial attacks targetting the model itself, labelling its input with the predicted
most probable class.

80To the optimisation of which as been – indeed – dedicated little time and effort.
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protocols. In such occurrence, no labelling efforts whatsoever are required to the trainer of CARSO.

3.2.2 General intuitions

The main intuitive considerations guiding the development of CARSO are synthesised along the

following thought flow :

• At inference time, being all neurons governed by deterministic operations, the representation

formed within each of them in a feedforward model must deterministically depend from those

of the neurons in the previous layer, and the weights associated with the connections within

the two layers. Such reasoning may be iterated straight from the scalar values part of the

input (hypothetically part of an input layer) up to the final layer of the network (whose

neuron with the largest representation determines the output class).

• Weights are fixed at inference time.

• If a given input is correctly classified by a feedforward classifier, but a perturbative adversarial

attack starting from such input is performed and succeeds, then a small perturbation in the

input layer must have been somehow preserved along the network until the output layer. In

this respect, [12] has provided key insights.

• As a consequence, the ordered representation of all (potentially; less may be sufficient) neurons

in the network must carry sufficient information to identify signature pathways activated by

any clean or perturbed input datapoints.

• Such ordered representation can be used as input to a further model, with e.g. the goal of

providing adversarial detection.

• Any gradient-based attack targetting such further detector must be able to produce a perturb-

ation in the classifier input that – within the strength constrains of such input – jointly not

only produces a misclassification, but also a (potentially unbound in strength) perturbation

of the representation (considered as input to the adversarial detector) fooling the latter.

• The gradients computed along the computational graph associated with the original classifier

up to its output w.r.t. the chosen classification loss and those tracked along the detector

through the classifier representation are fundamentally different at the neurons of the classifier.

Thus, any attacker attempting to do so, must at least optimise for two competing objectives

– with no guarantee of success in both simultaneously. Published literature is completely

lacking results pertaining the existence (or not) of such solutions.

• A similar result would be even more favourable in the case of adversarial purification. This

can be obtained if the ordered representation of the classifier, produced by the (potentially

perturbed) input, is used to condition the purification process without interest in the actual

output class. Then, the purified input is classified by the same classifier having produced the

representation – in order to ensure competing gradients in the classifier.
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• If the information contained in the representation of the classifier is sufficient to even recover

the input having produced it (and indeed it is possible, by just approximately inverting the

function described by the first layer of the network, from its representation!), the same device

can be used to generate an entire distribution of candidate purified inputs – by replacing the

code associated with the input with a structured random sample at inference time. This is

exactly what a conditional variational autoencoder does.

• Such latter sampling is also beneficial to the overall robustness of the system – in case of

specially-crafted attacks against it. By classifying a randomly sampled set of purified inputs

(instead of only one) and aggregating the resulting classes, (non-adversarial) robustness to

reconstruction noise or blur81 is increased dramatically. A hypothetical attacker should not

only be able to solve the multi-objective optimisation problem described above: it should do

so robustly w.r.t. generative sampling.

• Adversarial training of the original classifier does not interfere with the procedure just outlined,

but it even strengthens it. Not only the number of successful adversarial attacks decreases

for the classifier (thus resulting in an easier learning of the denoising process), but it also

provides a further safeguard should the purification be leaky.

Such ideas – with additional minor tricks required to work around some training difficulties or

corner cases are directly translated into the description of the methodology that follows.

3.2.3 Training protocol and architecture

The training protocol of CARSO is described schematically below, together with architectural elements

required at each step. Illustrative diagrams are provided in the appendix.

The classifier of interest N – whose robustness has to be increased – is adversarially trained

according to a pre-specified threat model (resulting in foreseen attacks against the classifier), until

full convergence. This phase requires both an (or more) attack generation mechanism of choice and

a labelled clean dataset. Alternatively, an adversarially trained, pre-trained classifier can be used:

in such case, however, the threat model is not fully controllable.

Inputs (to N ) from a clean dataset are then perturbed according to a pre-specified threat model

against the adversarially trained N from previous step (resulting in foreseen attacks for purification).

Differently from previous step – though a clean dataset is still required – no labelling is necessary,

nor it is the actual success of the attacks. In case a pre-trained N has been used, adversarial attacks

directed at it may also be readily available: in such case not even an attack generator is necessary,

at the further cost of fully losing control over the threat model; the corresponding clean datapoints

of each attacked input must be available, though.

The ordered82 representation of the classifier is extracted and used as conditioning set of a conditional

81Which is a typical phenomenon in such architectures.
82The actual order is not relevant, provided it is persistent w.r.t. the locations of the same neurons within the

network.
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variational autoencoder (of encoder E and decoder D) acting as a purifier. By encoding inputs picked

from the clean dataset, augmented with the foreseen attacks for purification – and conditioning on

the ordered representation – a map to the corresponding clean83 input is learned. The model could

be specifically trained as any other cVAE.

In case the dimensionality of the input needs to be rebalanced against that of the classifier

representation (or viceversa; a procedure usually done to improve the convergence properties of

the cVAE and speed up its training), an end-to-end approach has to be preferred. Dimensionality-

reducing pre-encoders EDRI for the input and EDRR for the representation can be directly placed on

top of the cVAE and their training jointly performed.

At the end of such training, only trained EDRR (if any) and D, and the adversarially trained N are

required for inference.

3.2.4 Inference protocol

The inference protocol of CARSO is now described schematically below. Illustrative diagrams are

provided in the appendix.

On arrival of a new input, this is evaluated by the adversarially-trained N with the aim of obtaining

only its ordered representation (i.e. there is no interest in the actual prediction, which can be safely

discarded).

The representation just extracted is concatenated with a random sample extracted from the latent

distribution implied during the training of the cVAE, and passed through D producing as output a

candidate purification of the input. Such process can be repeated an arbitrary number of times,

thus generatively sampling from the posterior distribution of purified inputs associated with the

original one.

The resulting collection of purified inputs is – each separately – classified by the same adversarially-

trained classifier N , thus resulting in a distribution of classes.

The resulting mode class may be used as the actual output of the system.

3.3 Experimental evaluation

The architecture and protocols proposed have been assessed on a prototypical, self-developed

benchmark test aiming at the evaluation of top-1 accuracy under attack in a simulated scenario

with both foreseen and unforeseen perturbations.

Tests have been performed on the MNIST dataset84, normalised to the [0, 1] range and further

standardised. The FGSM (constrained at ϵ = 0.15 and ϵ = 0.3 w.r.t. the || · ||2 norm) and PGD

(constrained at ϵ = 0.15 and ϵ = 0.3 w.r.t. the || · ||∞ norm) attacks have been considered as

representatives of foreseen attacks – whereas DeepFool (constrained at ϵ = 0.15, ϵ = 0.3 and ϵ = 0.5

83The clean input corresponding to a non-perturbed one is... itself!
84A dataset of small, square, greyscale digitisations of handwritten digits; see [39]
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w.r.t. the || · ||∞ norm) and the stronger FGSM (constrained at ϵ = 0.5 w.r.t. the || · ||2 norm) and

PGD (constrained at ϵ = 0.5 w.r.t. the || · ||∞ norm) as those of unforeseen attacks.85

All iterative attacks (i.e. PGD and DeepFool) additionally bore constraints on the maximum number

of iterations to be performed (fixed at 40 and 50 respectively) and on the size of per-iteration

perturbation (0.01 and 0.02 respectively).

As far as any of the deep learning models are concerned, only fully-connected feedforward archi-

tectures have been considered due to their simplicity and the still underdeveloped study of the

proposed technique. In order to reduce the dependency from hyperparameters, the number of

neurons in hidden layers have been fixed at that interpolating the two adjacent – with the only

exception being the classifier. This reduces the description of layer sizes along networks to that of

the input, output, and the overall number of hidden layers.

The classifier was built as a FCN variation upon convolutional neural network LeNet586, with an

input size of 28 × 28 (the size in greyscale pixels of the image), an output of 10 (corresponding

the ten digit classes) and hidden layers of sizes 200 and 80. Each layer, with the exception of the

last one, is preceded by 0.15 probability dropout and batch normalisation. The innovative Mish87

activation function has been the non-linearity of choice – due to its effectiveness in expressing

flexible mappings within even smaller models; the model has been trained via output-softmaxed

categorical cross-entropy minimisation.

The resulting representation consisted of 290 scalars. The latter, and original input, have been

pre-compressed by 2-hidden-layer networks with batch normalisation and no dropout before hidden

layers, with those using 0.1-steep Leaky ReLUs88 as non-linearities – to respectively 1/5
th

and

1/4
th

their original size, before being finally being shrunk through a sigmoid.

The encoder of the cVAE consisted in a further 1-hidden-layer network of the same kind – with

hyperbolic tangent shrinking, followed by two independent linear layers sharing the same input to

finally produce 36 means and standard deviations of independent Gaussian distributions.

The decoder mapping the conditioning set and the sample back to input space is a 2-hidden-layer

network – of the same kind as the pre-compressor, without Batch Normalisation before the last

layer. A further sigmoid at the end ensures a correct input coding in the pixelwise [0, 1] domain.

The reconstruction loss for the cVAE has been binary cross entropy, as a more amenable alternative

to || · ||2 for inputs bound within [0, 1].

The unperturbed classifier as a baseline, and both the adversarially trained and the cVAE, have been

85As a comparative note related to the strength of the perturbations, strengths above ϵ = 0.3 are usually considered
unrealistic, in the context of the MNIST dataset, due to easy detectability by the naked human eye. Bearing that in
mind, the peculiar DeepFool has been selected as unforeseen due to the unique approach at eliciting vulnerabilities
in the attacked model; ϵ = 0.5-bound perturbations as deliberately extreme attacks to test the upper limits of the
defence.

86See [38].
87A recently-proposed smooth, non-monotonic non-linearity, expressible as x tanh(softplus(x)), whose popularity

has steadily increase especially within the computer vision community. See [49] for a much more extensive analysis
and experimental evaluation.

88See [70].
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trained by the RAdam optimiser (with fixed β1 = 0.9, β2 = 0.999 and numerical stability constant

ε = 10−8), a starting learning rate of 0.05, 0.05 and 0.001 respectively – with further scaling by a

factor 0.6, 0.6, and 0.7 upon first after 10-epochs window, since previous learning rate reduction,

resulting in no overall loss decrease. A hard limit was liberally put at 300 epochs in total to ensure

full convergence.

The number of purified samples at inference time was fixed at 1500, and aggregation performed by

mode.

3.3.1 Results

Following the protocol described, and the specific CARSO architecture detailed by the hyperparameters

just reported, our proposal has been compared with IAT resulting in the following table 1.

Attack (type) / Defence (adv. acc.% ) None IAT CARSO

None 98.40 97.17 96.72

FGSM || · ||2, ϵ = 0.15 12.09 91.89 93.62
FGSM || · ||2, ϵ = 0.30 01.21 76.94 86.43

(U) FGSM || · ||2, ϵ = 0.50 01.00 12.29 13.59

PGD || · ||∞, ϵ = 0.15 01.60 90.54 93.44
PGD || · ||∞, ϵ = 0.30 06.85 71.26 86.27

(U) PGD || · ||∞, ϵ = 0.50 20.66 11.67 38.38

(U) DF || · ||∞, ϵ = 0.15 00.66 90.25 95.06
(U) DF || · ||∞, ϵ = 0.30 00.00 60.54 93.31
(U) DF || · ||∞, ϵ = 0.50 00.00 00.78 71.34

Table 1: Top-1 accuracy under attack against different types of adversarial attack (rows) directed
at the FCN classifier, defended by two techniques (columns): Iterative Adversarial Training and
CARSO. Unforeseen attacks – against both the classifier and the purifier – are marked by ‘(U)’; the
best performing defence per given attack is emboldened.

3.3.2 Ablation studies

Ablation studies were performed in order to assess whether the most relevant modelling choices

resulting in the final architecture and protocols of CARSO were justified w.r.t. a simpler, more

traditional alternative.

Results are summarised in the following.

• On the necessity of adversarial training altogether. Tests were performed with the same ar-

chitecture as that described, training all models on clean inputs only. The results – in the

same setting investigated right above – showed a significant increase in adversarial robustness

compared to the clean model, with accuracies under attack in the range of 0.15% ∼ 0.25% for

the classifier and 15% ∼ 25% for CARSO. Despite indicative of some degree of success, such

approach was discarded as markedly unsatisfactory w.r.t. other simpler and more popular

adversarial defences. Noteworthy the fact that – in some rare cases – such approach still
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managed to obtain a robustness comparable to or greater than iterative adversarial training.

Similar attempts w.r.t. partial adversarial training (i.e. of the classifier or the cVAE alone)

were performed, resulting in a slight increase in accuracy under attack in comparison to

the entirely non-adversarial training; still, similar considerations applied, due to the lack of

competitiveness with simpler alternative defences.

• On the number of purified samples. Sweeps across three orders of magnitude have been per-

formed, with a sample size under 700 showing unsatisfactory results due to intolerable

reconstruction noise. Detectable increases were present until ∼ 2000, becoming less significant

after 1500.

• On the number of layers in the cVAE networks. Avoiding by design networks with no hidden

layers, the number of them in those carrying > 1 have been – indeed – increased starting from

1 and with 1-increments as part of the development process, until the shallowest satisfactory

network was reached.

Structured attempts at further hyperparameter optimisation, different kinds of adversarial attack

for the foreseen and/or unforeseen cases, different image datasets (including changes in subject

and/or colour space), or different types of data have not been performed – but are planned within

the ongoing exploration of such defence technique.

3.3.3 Discussion

From the comparison of the accuracies reported above, it is possible to firstly see that – further

along the lines of what occurs in the case of iterative adversarial training, and adversarial training

in general – the newly proposed defence technique imposes an accuracy toll in the case of clean

inputs. Being exactly the same iteratively adversarially trained classifier shared among CARSO and

IAT approaches – and even considering the effects of purification noise/blur alone, it is expected

that such accuracy toll is in the case of CARSO, even if marginally, greater w.r.t. IAT.

On the other hand, if we consider even just the results on against foreseen attacks, it is evident a

pervasive and much more remarkable accuracy under attack gain by CARSO, which increases with

the strength of the attack. Such peculiar phenomenon will be further discussed, in the light of

what follows. In the case of strong universal attacks, CARSO attains more than an 1/5th incremental

accuracy gain. In no case among those tested, IAT fared better than CARSO against foreseen attacks.

At this point – and further clearing the floor form the considerations about the the high resilience

of CARSO against directed attacks – whether the additional time required for the training of the

cVAE machinery, and the latency penalisations at inference determined by the repeated sampling

process and classification, are justified by the more robust results is still up to debate.

The area in which CARSO shines the most is yet to be analysed: robustness towards unforeseen

attacks. Though very marginal in the case of strong, unforeseen FGSM attacks (still producing an

increase of around 1/12th), performance against strong PGD attacks and any DeepFool perturbation

is very solid. While in the case of the weakest DeepFool attack the accuracy under attack gain is
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significant but ultimately modest w.r.t. IAT, the remaining strengths show its highest.

While the overall increased robustness shown by CARSO is definitely the effect of a synergistic

interaction among the two proper models involved (i.e. the adversarially-trained classifier and

the cVAE, which are – indeed – self-standing adversarial defences on their own) – in retrospect

it is further possible to hypothesise a deeper insight into the credit assignment between the two

cooperating strategies, and across the cases considered.

By noticing how – by construction – the DeepFool attack favours perturbations resulting off-data-

manifold, and by correlating the much increased success in defending against such attack to the

addition of the cVAE to an already adversarially-defended classifier, one may suggest that:

• The adversarial training of the classifier – with the highest density of perturbations close to

the data manifold, due to both accidental choice of foreseen attacks and peculiar training

dynamics – mostly helped in reducing the local intrinsic dimension89 of decision boundaries

between on-manifold classes.

• On the other hand, the addition of an encoder/decoder model tasked with the purification of

adversarial inputs directed towards the same adversarially-trained classifier, may have mostly

compensated the expansion along the co-dimensional submanifold, within input space. The

increase in accuracy under attack offered by the addition of the cVAE with laxer strength

constraints may indeed corroborate this hypothesis: within a smaller allowed displacement

radius in input space, the data manifold may contain a close-enough moderately effective result

of adversarial perturbation. However, it is out-of-manifold that the training set (of purely

adversarial examples, used during training) is more disperse – and the effect of untargeted,

competing perturbations lying on the surface on the clean-input-centred cone may easily

cancel out in the long run. If allowed, a stronger attacker will probably find there a much

more optimal attack.

The potential development along such final consideration is definitely interesting both from the

viewpoint of pure comprehension of the phenomenon of adversarial attacks and robustness – but

also for the practical development of actionable defences able to respond differently in case of

different threats.

With respect to the last point, the results of the strongest (and unforeseen) PGD attack my be a

motivating example: the robustness of the IAT-trained model is decreased w.r.t. the clean classifier.

An explanation may depend on the learning capacity of the model being undersized for a the

learning of all given examples within arbitrary tolerances: this induces competition among different

examples within the model. And while the optimisation problem tackled by a gradient-based

attacker is – as in the training process of a neural model was – poisoned by the same susceptibility

to local convergence, such competition may have involuntarily smoothed the loss landscape for the

enemy.

89See [6] for a much more in-depth analysis of the phenomenon – and definitely more!
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4 Conclusions

In the work which is now concluding, we moved from the genuine curiosity about how the study of

elusive cognitive phenomena may inform the development of ever more capable deep artificial neural

networks. Along the way – we described the development of CARSO, a potentially promising, still

embryonic, novel technique to provide reliable adversarial defence against gradient-based foreseen

and unforeseen attacks targeting a fully-connected feedforward image classifier – and we positively

assessed its effectiveness against a most relied-upon, alternative methodology.

Though coming at an increased cost in terms of clean input accuracy and training time (making it

probably not the first choice for realtime, continuous-acquisition applications), CARSO is additionally

able provide – as an add on to previously adversarially-trained classifiers, and without relying

on additional labelling – innate, close to clean accuracy to perturbed inputs with a strong off-

data-manifold component, and so self-defend against gradient-based attacks directed specifically at

it.

Most importantly, it was able to provide further – deeper and enthralling – questions waiting to

be played with, both down along the way towards the development of safer, less exploitable deep

learning and within the fertile crescent at the confluence of the biological and the mathematical

approach to the study of intelligence, in all its possible hues.

4.1 Future work

The contribution provided by this thesis is indeed minimal with such an ambitious destination in

mind; yet it could be the starting point down potentially many avenues just discovered.

4.1.1 Incremental experimentation

Surely, the experimental evaluation of CARSO – across a wider variety of threat models, datasets and

tasks, adversarial attacks and variations of the same protocol, is the most needed and immediate

pursuit required to further understand and eventually productionise the technique.

4.1.2 FiWAGR90: Filtering via Weight Agnostic Gradient Randomisation

Furthermore, the leverage of competing gradients within model representation – at the basis on

an increased defensibility against directly-targeted attacks – could inspire additional, independent

evolutions towards theoretically-guaranteed full gradient-based defences. Of this kind, a for now

only hypothetical, still unexplored, neural architecture containing gradient-stopping weight-agnostic

layers91 able in theory to provide a randomised gradient independent of model functionality – and

converging to zero in expectation without resulting in gradient masking for individual samples.

90To be pronounced as ‘figure’ – in a stretch, will it ever be possible: both to be carried out as a work, and/or to be
pronounced as such.

91First theorised and experimented with in [18], but whose perceived interest waned over time within the deep
learning community.
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4.1.3 Moonshot goal(s)

Finally, still with the original goal in mind and potentially deviating from the riverbed of the work

until now illustrated, more direct approaches towards biological/artificial intelligence convergence

may be taken. E.g. by analysing the actual structure on representations along neural models and

neurobiological pathways (e.g. the ventral stream) of live animals during the actual process of

learning92. At this stage, we still do not know if such path will be walkable, or where it would

eventually lead: maybe to nowhere, maybe to ever new questions, whose growing abundance may

incidentally substantiate the same act of thinking we started interrogating about.

92Such fascinating direction of research has been suggested by Fabio Anselmi during the last Neuroscience &
Statistical Physics Workshop, held at SISSA in late Spring 2022.
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Appendix: figures

Figure 1: Essentialised CARSO architecture at training time. Square elements denote inputs or their
reconstruction (the same colours and graphical pattern are used regardless of implied similarity).
The size of the elements is not necessarily in scale (an estimation based on typical scenarios has
been made).
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Figure 2: Essentialised CARSO architecture at inference time. Square elements denote inputs or their
reconstruction (the same colours and graphical pattern are used regardless of implied similarity).
Round elements denote the output class of the classifier taken into consideration. The region bordered
by the dashed line constitutes the input-reconstruction sampler (followed by the classifier N ), whose
use can be arbitrarily repeated, for fixed input x. The size of the elements is not necessarily in scale
(an estimation based on typical scenarios has been made).
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